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Abstract In this paper, we consider a periodic-review make-to-order production/inventory
system with two outbound transportation carriers: One carrier is reliable, the other carrier is
less reliable but more economical. The objective is to find the optimal shipping policy that
minimizes the total discounted transportation, inventory, and customer waiting costs. Under
several scenarios, we characterize the optimal policy and present the structural properties
for the optimal control parameters and the key performance measures. Our results provide
managerial insights on how a manufacturer can effectively manage its transportation carriers
and product shipment. We also discuss several possible extensions of the model.

Keywords Make-to-order · Production/inventory system · Setup cost · Transportation
carrier · Optimal policies

1 Introduction

Third party logistics (3PL) is expanding rapidly as more global companies realize the potential
cost savings of outsourcing their logistics services. For example, in year 2003, 78% of North
American companies used 3PL services and 94% of Western European companies used
3PL services. In North America, 43% of a company’s logistics expenses are spent on 3PL
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services (Clyde 2003). By outsourcing the logistics, a manufacturer can focus more on its
core competencies to improve profitability.

One of the main problems faced by the manufacturer’s logistics is the selection and utili-
zation of the 3PL providers. After outsourcing the transportation to the carriers, one key issue
for the manufacturers is how to efficiently manage the carriers. Usually, using the reliable
carrier may give rise to a higher shipping cost. On the other hand, utilizing less reliable carrier
can reduce the shipping cost but may also incur unexpected disruptions, resulting in delays in
shipment. In practice, the carrier usually only has a limited capacity which the manufacturer
has to take into consideration when making decisions. The manufacturer’s problem is to
determine the outsourcing policy, including when and how much to outsource its shipment to
each of its transportation carriers so that the total cost over a planning horizon is minimized.

In this paper, we consider a periodic-review make-to-order production/inventory system
with one manufacturer and two transportation carriers. One carrier is unreliable in the sense
that it can be up or down in a period while the other is reliable and is always available. Cus-
tomer demands in different periods are i.i.d. random variables. The system incurs inventory
holding/customer waiting costs as well as transportation costs. We characterize the optimal
shipping policies for the model under several different scenarios. We also present struc-
tural results of the performance measures and the optimal control parameters which provide
insights to the optimal operations of the system.

This research is motivated by the experience of the first author when he was a summer
intern with a company that supplies monitors to Dell and HP Computers. The company has
several trucking companies as its potential transportation carriers. When making shipping
decisions, the company usually first utilizes the economical carrier to ship its products, and
only when that carrier is not available, then it will use the other carriers depending on the
emergency of the delivery. In such cases the company has to decide how much to ship, based
on the status of stock level and its estimate on the future availability of low cost carriers.

There are several approaches to model a transportation carrier’s reliability. One is random
yield, which means that some of goods may be damaged during the delivery process; and
the other is random delivery leadtimes. Different from the availability of the carrier that we
consider in this paper, random yield models examine the impact of uncertainty in the shipping
quantity . The interested reader is referred to Yano and Lee (1995) for a detailed review. The
stochastic delivery leadtime is related to our model and, in the case the customer waiting cost
is linear in leadtime, it can be incorporated into our model by modifying the unit delivery
costs for each carrier. Once the shipping quantity for the carrier is determined, the expected
waiting costs of customers for the quantity are known. Thus we can consider the unit delivery
cost for each carrier as the actual unit delivery cost plus the unit waiting cost for the customer
multiplied by the expected delivery leadtime.

In the production/inventory literature, much work has been done on inventory models with
transportation consideration. Lee (1986, 1989), extend the classical EOQ model and dynamic
lot size model by including step-wise transportation cost structure, respectively. Cetinkaya
and Lee (2000) consider a model coordinating inventory and transportation decisions in VMI
systems. Wang and Lee (2005) consider two transportation modes with different transpor-
tation time and cost. The cheaper mode has longer transportation time. Their objective is to
minimize total weighted tardiness plus transportation cost. Toptal and Cetinkaya (2005) study
the system-wide cost improvement rates with respect to coordination of inventory replen-
ishment, inbound and outbound transportation costs, and capacity. They present detailed
numerical results quantifying the value of coordination with transportation considerations.
Bhargave et al. (2006) discuss an E-retailer who uses delivery fees as the lever to influence
the consumers’ choice of delivery modes. Consumers can choose the fast delivery mode at
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higher costs or choose the regular mode at lower costs but with longer waiting time. In the
literature above, it is all assumed that the transportation carriers are reliable.

There is also a rich literature studying the problem with unreliable suppliers in the supply
chain. For deterministic demand models, Parlar and Berkin (1991) study the classic EOQ
model with supply disruptions. Moinzadeh and Aggarwal (1997) consider an unreliable pro-
duction/inventory system with constant production and demand rate with disruptions. The
model of Moinzadeh and Aggarwal assumes that the repairing time is constant while the
time between disruptions is exponentially distributed random variable. An (s, S) production
policy is proposed and the properties of the optimal control parameters are presented.

For stochastic demand models, Arreola-Risa and Decroix (1998) consider stochastic
demand inventory system with randomly supply disruption and partially backorder. They
obtain the optimal policy parameters for the modified (s, S) policy. The paper by Li (2004)
considers a periodic-review inventory model, in which the supplier can be either available or
unavailable. The availability of supply is modeled as an alternating renewal process with gen-
eral distribution for the duration of up and down cycles. They show that the state-dependent
base-stock policy is optimal and the optimal base-stock level is nondecreasing if the up cycle
has a nondecreasing failure rate. More recently, Tomlin (2006) studies an infinite-horizon
periodic-review supply chain with one retailer and two suppliers. One of the suppliers is
unreliable and the other one is reliable. Under several different model settings, with linear
ordering cost, Tomlin discusses the optimal policies for the following decisions that are cru-
cial to deal with the supply disruptions: Is it better to use single sourcing or dual sourcing
strategy and if dual, what is the optimal allocation among suppliers? When and how much
lost supply should be rerouted to the alternative supplier? What is the optimal inventory
control policy?

The remainder of the paper is organized as follows. In the next section, we describe the
general model and introduce the notation. In Sects. 3 and 4 we analyze the model with infinite
and finite shipping capacities respectively. We conclude the paper with some discussions of
possible extensions in Sect. 5. Some technical proofs are provided in the Appendix and other
omitted proofs can be obtained from the authors upon request. Throughout the paper, we use
“increasing” and “decreasing” in a non-strict sense, i.e., they represent “nondecreasing” and
“nonincreasing”, respectively. And for any function f (x, y), we use f ′(x, y) to denote the
derivative of f with respect to the first variable x .

2 Notation and problem description

Consider a periodic-review make-to-order production/inventory system with one manufac-
turer and two transportation carriers. The manufacturer’s production quantity in each period
is based on customer orders and we assume the production leadtime is 1. The demand Dt

for each period t is i.i.d. random variable with distribution function F(·). The manufacturer
outsources its outbound logistics to two transportation carriers. One of the carriers is unreli-
able in the sense that it can be up or down in a period and the other one is reliable thus it is
always available. The unreliable (resp., reliable) carrier is denoted by U (resp., R). Since we
consider a make-to-order production system, the production costs are sunk and we ignore
them here for simplicity. There are fixed setup costs whenever the manufacturer schedules
a shipment with either one of the carriers. We denote the setup cost for carriers U and R by
Ku and Kr , respectively. The unit shipping cost is cu for carrier U and cr for carrier R. It
is plausible to assume that Kr ≥ Ku and cr > cu since the reliable carrier usually charges
higher price than the unreliable carrier does. The inventory holding cost and customer waiting
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cost function h(x) is nondecreasing convex with respect to the inventory level x at the end
of each period. Because the inventory level at the manufacturer never drops to below 0, we
assume h(x) = 0 for x ≤ 0. Here x represents both inventory and the number of outstanding
orders because the system is make-to-order. Moreover, both carriers may only have limited
shipping capacities. We use Cu to denote the capacity of carrier U when it is available and
Cr the capacity for carrier R. Let α denote the discount rate per period, i.e. 0 ≤ α < 1.
The objective is to determine the optimal shipping policy that minimizes the total expected
discounted cost over a finite planning horizon.

We model the unreliable carrier U as a discrete-time Markov process. This modeling tech-
nique is also adopted in Tomlin (2006). Let 0 represent that carrier U is in the up state and
i = 1, 2, . . . , M represent that carrier U has been down for i − 1 periods. Let λ(0) be the
probability that U will remain up in the next period given it is up this period and λ(i) be
the probability that U will become available after i periods given it has been down for i − 1
periods. Given U is in state i at the beginning of a period, it will transit to either state 0 with
probability λ(i) or state i + 1 with probability 1 − λ(i) at the end of the period. We assume
λ(M) = 1, which means after being down for M periods, U will certainly become avail-
able. The rational we model the unreliable carrier as a Markov chain is that the recovering
process of a carrier usually only depends on its current status, with some positive probabil-
ity it can fully recover while it can also evolve to a better state as the recovering process
evolves.

Some other notations:

T = the given length of the planning horizon,
xt = initial inventory level at period t ,
it = state of unreliable carrier U at the beginning of period t ,
yt = the inventory level after shipping but before demand realizes at period t ,
D = the generic one-period demand,
Vt (xt , it ) = the minimum total expected discounted cost from period t to T .

The time sequence of events is as follows. First, at the beginning of period t , the products
produced at period t − 1 are available for shipping. Second, the manufacturer chooses the
transportation carrier and determines the shipping quantity xt − yt . Third, the customer order
for current period, Dt , arrives and the manufacturer starts producing the orders. Fourth, at
the end of period t , all costs are incurred and state transition happens.

The optimality equation for the general model is

Vt (xt , it ) = min
C(it )+Cr ≥xt −yt ≥0

{
Ku1(C(it ) ≥ xt − yt > 0) + Kr 1(xt − yt > C(it ))

+ cu(xt − yt )
+ + (cr − cu)(xt − yt − C(it ))

+ + E[h(yt + D)]
+α

(
λ(it )E[Vt+1(yt + D, 0)] + (1 − λ(it ))E[Vt+1(yt + D, it + 1)])

}
,

(1)

where if it = 0, then C(it ) = Cu , otherwise, C(it ) = 0; 1(A) = 1 if A is true, otherwise
1(A) = 0, and we assume if it = M , then it+1 = 0 with probability 1. The first two terms
inside the optimization operator imply that the firm will not use the high cost reliable carrier
unless the capacity of the low-cost unreliable carrier is used up or it is not available. The
fourth term represents the extra cost by using the reliable carrier.

In the following two sections, we study different scenarios of the general model described
in this section and present the main results of the paper. For simplicity, in all the proofs, we
suppress the subscript “t” of x , y and i .
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3 Uncapacitated carriers

In this section, we assume that both carriers have infinite transportation capacities and con-
sider two scenarios: no setup costs and setup costs for the carriers.

3.1 No setup cost

We first consider the case that there are no setup costs for both carriers. This type of models
is more relevant to the motor carriers industry which consists of high level of variable costs
and relatively low fixed costs (Coyle et al. 2000).

Because both carriers have infinite capacities, there is no incentive for the manufacturer
to use both carriers when unreliable carrier U is available because it is cheaper. Thus the
optimality equation (1) becomes

Vt (xt , it ) = min
xt ≥yt ≥0

{c(it )(xt − yt ) + E[h(yt + D)] + αλ(it )E[Vt+1(yt + D, 0)]
+α(1 − λ(it ))E[Vt+1(yt + D, it + 1)]}, (2)

where c(it ) = cu if it = 0 and c(it ) = cr , otherwise. We assume VT +1(xT +1, iT +1) =
c(iT +1)xT +1, that is, at the end of the planning horizon the manufacturer has to fill all the
customer orders if there are any.

Define

Jt (y, i) = −c(i)y + E[h(y + D)] + αλ(i)E[Vt+1(y + D, 0)]
+α(1 − λ(i))E[Vt+1(y + D, i + 1)], (3)

and so

Vt (xt , it ) = min
xt ≥yt ≥0

Jt (yt , it ) + c(it )xt .

The following lemma can be easily proved by induction on t , so we omit the proof.

Lemma 1 For any t with 1 ≤ t ≤ T + 1 and give i , then Vt (x, i) is convex in x.

Based on this lemma, for i = 0, 1, . . . , M , we define,

st (i) = arg min
y≥0

Jt (y, i). (4)

Note that there may be multiple minimizer of Jt (y, i), in such case, let st (i) be the mini-
mum one.

The following result states that the higher the initial inventory level, the higher the optimal
inventory and transportation costs over the planning horizon. We omit its proof since it is a
special case of Lemma 4 whose proof is given in the Appendix.

Lemma 2 When there are no setup costs and no capacity constraints for both carriers,
Vt (x, i) is increasing in x.

The following theorem characterizes the optimal shipping policy for the manufacturer.

Theorem 1 The optimal shipping policy is a state-dependent threshold-type policy. That is,
for t = 1, . . . , T and i = 0, . . . , M,

y∗
t (i) =

{
st (i) if xt > st (i),
xt otherwise,

in which st (i) is defined as (4).
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Proof Note that Jt (y, i) is convex. If x > st (i), the manufacturer can reduce its inventory
level down to st (i) which is the minimizer of the objective cost function. If x ≤ st (i), then the
objective function Jt (y, i) is decreasing in y so the optimal policy is not to ship anything.��

Remark 1 If we can consider xt as the starting backlog level at period t and the ordering
quantity must be less than or equal to xt , then our setting is, mathematically, similar to that of
Tomlin (2006), although his model does not include constraint on ordering quantity (yt ≤ xt ).
We note that, however, the remaining results in this section are not reported in Tomlin (2006).

In what follows, we provide some qualitative relationships among the value function,
optimal policy and system parameters.

Lemma 3 For any i = 0, 1, . . . , M, st (i) is decreasing in t for t = 1, . . . , T + 1.

Proof Because of the convexity of Jt (y, i), it is sufficient to show that J ′
t+1(y, i) ≥ J ′

t (y, i)
for all y and i . We prove this by induction on t . For period t = T , since VT +1(x, i) = c(i)x ,

J ′
T (y, i) = −c(i) + E[h(y + D)]′ + αλ(i)cu + α(1 − λ(i))cr

and

J ′
T −1(y, i) = −c(i) + E[h(y + D)]′ + αλ(i)E[VT (y + D, 0)]′

+α(1 − λ(i))E[VT (y + D, i + 1)]′.

As it is not hard to see that E[VT (y + D, 0)]′ ≤ cu and E[VT (y + D, i + 1)]′ ≤ cr , so
J ′

T (y, i) ≥ J ′
T −1(y, i). For period t = k + 1, suppose J ′

k+2(y, i) ≥ J ′
k+1(y, i). Then for

period t = k, from (3), we know that it is sufficient to show V ′
k+2(x, i) ≥ V ′

k+1(x, i).
If x ≥ sk+1(i), then x ≥ sk+2(i)because of the inductive assumption. Hence, V ′

k+1(x, i) =
V ′

k+2(x, i) = c(i). If x < sk+1(i), then V ′
k+1(x, i) = J ′

k+1(x, i) + c(i) and there are two
cases. First, x ≥ sk+2(i), then V ′

k+2(x, i) = c(i) ≥ J ′
k+1(x, i)+c(i) because J ′

k+1(x, i) ≤ 0.
Second, x < sk+2(i), then V ′

k+2(x, i) = J ′
k+2(x, i) + c(i) ≥ J ′

k+1(x, i) + c(i) by induc-
tive assumption. Thus, V ′

k+2(x, i) ≥ V ′
k+1(x, i) and so J ′

k+1(y, i) ≥ J ′
k(y, i). Therefore,

st (i) ≥ st+1(i). ��
Following this lemma, in the next proposition we further show that the optimal threshold

st (i) is increasing in i if λ(i) is increasing in i for i > 0„ i.e., the longer the carrier has been
down, the more likely it is to end in the current period. Thus in this case, for the manufacturer,
the proposition suggests that it is better to hold more inventory if carrier U has been down
for more periods, because it is more likely to become available in the next period.

Proposition 1 For any t = 1, . . . , T + 1, if λ(i) is increasing in i for i > 0, then st (i) is
increasing in i for 0 ≤ i ≤ M.

Note that If λ(i + 1) ≥ λ(i) for i = 1, . . . , M − 1, from Proposition 1 and Lemma 3,
st (M) is the solution of

− cr + E[h(y + D)]′ + αcu = 0, (5)

which can be easily solved.
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Moreover, for i = M − 1, st (M − 1) is the solution of

J ′
t (y, M − 1)

= −cr + E[h(y + D)]′ + αλ(M − 1)cu + α(1 − λ(M − 1))E[V ′
t+1(y + D, M)]

= −cr + E[h(y + D)]′ + αλ(M − 1)cu + α(1 − λ(M − 1))

[
cr (1 − F(st (M) − y))

+
st (M)−y∫

0

E[h(y + D + ξ)]′ + λ(M)E[Vt+2(y + D + ξ, 0)]′d F(ξ)

]

= −cr + E[h(y + D)]′ + αλ(M − 1)cu + α(1 − λ(M − 1))

[
cr (1 − F(st (M) − y))

+
st (M)−y∫

0

E[h(y + D + ξ)]′ + αcud F(ξ)

]
= 0,

where the last equality follows from λ(M) = 1 and st (M − 1) ≥ st+1(M − 1) ≥ st+1(0).
Similarly, for i = 1, 2, . . . , M − 2, st (i) is the solution of

−cr + E[h(y + D)]′ + αλ(i)cu + α(1 − λ(i))

[
cr (1 − F(st (i + 1) − y))

+
st (i+1)−y∫

0

E[h(y + D + ξ)]′ + αλ(i + 1)cu + α(1 − λ(i + 1))

E[Vt+2(y + D + ξ, i + 2)]′d F(ξ)

]
= 0.

For i = 0, st (0) is the solution of

(αλ(0) − 1)cu + E[h(y + D)]′ + α(1 − λ(0))]
[

cr (1 − F(st (1) − y))

+
st (1)−y∫

0

E[h(y+D+ξ)]′+αλ(1)cu+α(1 − λ(1))E[Vt+2(y+D+ξ, 2)]′d F(ξ)

]
= 0.

Based on the proceeding discussion, the optimal control parameter st (i), i = 0, 1, . . . , M ,
can be computed recursively.

Remark 2 E[h′(D)] is the minimum marginal cost to have one more customer to wait, αcu

is the discounted unit delivery cost in the next period by using the unreliable carrier if it is
available, and cr is the unit cost to deliver now by using the reliable carrier. If E[h′(D)] +
αcu ≥ cr , then st (i) = 0 for all i and it is optimal for the manufacturer to ship every unit of
the product to the customers right after it is produced and hold zero inventory since it is more
cost effective. If cr > E[h′(D)]+αcu ≥ cu , then the optimal policy is that the manufacturer
ships all of its on-hand inventory if carrier U is available, otherwise, follows the threshold
type policy for carrier R.

In the following proposition, we investigate how the value functions and optimal solutions
depend on M which is the maximum number of periods that the unreliable carrier needs to
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recover from down state. Clearly, Vt (x, i) and Jt (y, i) depend on M through λ(i) which is
written as λ(i, M) in the proposition to emphasize the dependence on M . Let M2 ≥ M1 and
specifically, we are interested to see how Vt (x, i) and st (i) change when M = M1 increases
to M = M2.

Proposition 2 For i = 0, 1, . . . , M1, if M1 ≤ M2 and λ(i, M1) ≥ λ(i, M2) and λ(0, M1) =
λ(0, M2), then, when M changes from M1 to M2,

(a) Vt (x, i) becomes higher;
(b) st (i) gets lower;
(c) V ′

t (x, i) increases.

If we increase the maximum number of possible down periods for carrier U, then intui-
tively, the probability that it will become available after i periods down, i ≤ M1, would be
smaller. And if this holds, the optimal system cost gets higher and the optimal deliver-down-to
levels of the original system become lower.

Proposition 3 Suppose λ(i) is increasing for i > 0. Then, for any given 0 < i ≤ M, if λ(i)
is increased, then the corresponding st (i) becomes higher for t = 1, . . . , T + 1.

Proof We use Implicit Function Theorem to prove the proposition. We take derivative of (15)
with respect to λ(i) and note that (E[Vt+1(st (i) + D, i + 1)])′λ(i) = 0 because st (i) + D >

st+ j (i) for j ≥ 0. As a result,(
E[h(st (i) + D)]′′ + αλ(i)E[Vt+1(st (i) + D, 0)]′′ + α(1 − λ(i))

E[Vt+1(st (i) + D, i + 1)]′′)s′
t (i)=α(E[Vt+1(st (i) + D, i + 1)]′−E[Vt+1(st (i)+D, 0)]′).

Because of the convexity of Vt (·, i) and h(·), it is sufficient to show E[Vt+1(st (i)+ D, i +
1)]′ ≥ E[Vt+1(st (i) + D, 0)]′, which has been shown in the proof of Proposition 2. So the
proposition follows. ��

This proposition implies that, given the state of the carrier U , if the probability that it
becomes available in next period gets higher, the manufacturer should have higher optimal
deliver-down-to level.

We end this subsection with some numerical examples to illustrate the structural prop-
erties we have obtained. The basic parameters for the examples are M = 5, T = 10, and
α = 0.92. The examples are generated by alternating the unit shipping cost for either carriers.
The random demand in each period is negative binomial distributed with parameters n = 50
and p = 0.3. The inventory holding and customer waiting cost is h(x) = 0.1x2 for x ≥ 0.
The transition probabilities are λ(0) = 0.5, λ(1) = 0.3, λ(2) = 0.4, λ(3) = 0.5, λ(4) =
0.6, λ(5) = 1.

In Table 1, we present the optimal thresholds for the examples. Note that the optimal thresh-
olds are decreasing in the unit shipping cost cu of unreliable carrier U while are increasing in
the unit shipping cost cr of reliable carrier R. The intuitive explanation is that as the differ-
ence of costs between U and R becomes smaller (larger), the manufacturer has less (more)
incentive to hold inventory to wait until carrier U becomes available.

3.2 Setup costs

In this subsection, there are fixed transportation costs for both carriers and assume Kr ≥ Ku .
The optimality equation (1) becomes

Vt (xt , it ) = min
xt ≥yt ≥0

{K (it )1(yt < xt ) + c(it )(xt − yt ) + E[h(yt + D)]
+α[λ(it )E[Vt+1(yt + D, 0)] + (1 − λ(it ))E[Vt+1(yt + D, it + 1)]]}, (6)
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Table 1 Optimal thresholds for uncapacitated carriers without setup costs

cu (cr = 10) s(0) s(1) s(2) s(3) s(4) s(5) cr (cu = 2) s(0) s(1) s(2) s(3) s(4) s(5)

1 0 1 6 10 15 30 6 0 0 0 0 0 6
2 0 0 4 7 11 26 7 0 0 0 0 2 11
3 0 0 2 5 8 21 8 0 0 0 2 5 16
4 0 0 0 3 6 17 9 0 0 1 5 8 21
5 0 0 0 1 3 12 10 0 0 4 7 11 26

in which K (it ) = Ku if it = 0 and K (it ) = Kr otherwise. Assume VT +1(xT +1, iT +1) =
K (iT +1)1(xT +1 > 0) + c(iT +1)xT +1.

The proof of the following lemma is given in the Appendix.

Lemma 4 If there are setup costs for both carriers, for a given i , Vt (x, i) is increasing in x.

In the remaining analysis, we assume either Ku ≥ αKr or E[h′(D)] ≥ cu . Before char-
acterizing the optimal shipping policy for the manufacturer, we introduce the following
definition of {K , 0}-convexity, which is a simple modification of the K-convexity concept
introduced by Scarf (1960) (see also a more general definition in Chen and Simchi-Levi
2003).

Definition 1 A real value function f is called {K , 0}-convex for K ≥ 0, if

f (βx1 + (1 − β)x2) ≤ β( f (x1) + K ) + (1 − β) f (x2)

holds for any x1 ≤ x2, β ∈ [0, 1].
Without much abuse of notation, in this section with setup costs, we still let

Jt (y, i) = −c(i)y + E[h(y + D)] + α(λ(i)E[Vt+1(y + D, 0)]
+ (1 − λ(i))E[Vt+1(y + D, i + 1)]), (7)

then

Vt (xt , it ) = min
xt ≥yt ≥0

{K (it )1(yt < xt ) + Jt (yt , it )} + c(it )xt .

We are now ready to present the main result of this section.

Theorem 2 When there exist setup costs for both carriers, for a given i ,

(a) Jt (y, i) is a {Kr , 0}-convex function in y ≥ 0;
(b) Vt (x, i) is a {Kr , 0}-convex function in x ≥ 0;
(c) There exists a sequence of numbers 0 ≤ st (i) < St (i), which is defined as

st (i) = arg min
y≥0

Jt (y, i) (8)

and

St (i) = max{y|Jt (y, i) = Jt (st (i), i) + K (i), y ≥ st (i)}. (9)

For i = 0, 1, 2, . . . , M, the optimal policy is an (s, S)-type of policy, that is,

y∗
t (i) =

{
st (i) if xt ≥ St (i),
xt otherwise.
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With the optimal (st (i), St (i)), the manufacturer ships x − st (i) units if the current state
of U is i and the inventory level is higher than St (i); otherwise, do not ship anything. We
note that if E[h′(D)] ≥ cu , then st (0) = 0.

4 Capacitated carriers

In many applications, the transportation carrier only has a finite shipping capacity for the
manufacturer. In this section, carrier U is assumed to have a constant capacity Cu if it is
available and carrier R has capacity Cr which can be interpreted as the volume flexibility
carrier R offers to the manufacturer. In this case, since U has a limited shipping capacity, in
each period, the manufacturer may schedule shipments with both carriers U and R even if U
is available. We first assume no setup costs for both carriers. The optimality equations are
given by

Vt (xt , 0) = min
xt ≥yt ≥max{0,xt −Cr −Cu }{cu(xt − yt ) + (cr − cu)(xt − yt − Cu)++E[h(yt + D)]
+αλ(0)E[Vt+1(yt + D, 0)] + α(1 − λ(0))E[Vt+1(yt + D, 1)]}, (10)

and for it = 1, 2, . . . , M,

Vt (xt , it ) = min
xt ≥yt ≥max{xt −Cr ,0}{cr (xt − yt ) + E[h(yt + D)] + αλ(it )E[Vt+1(yt + D, 0)]
+α(1 − λ(it ))E[Vt+1(yt + D, it + 1)]}. (11)

Recall that yt denotes the inventory level after shipping.
The proof of the following lemma is parallel to that in the previous section, thus it is

omitted.

Lemma 5 When there are capacity constraints for both carriers, for a given i , Vt (x, i) is
increasing and convex in x.

For i = 0, define

s1
t (0) = arg min

y≥0
J 1

t (y, 0)

where

J 1
t (y, 0) = −cr y + E[h(y + D)] + αλ(0)E[Vt+1(y + D, 0)]

+α(1 − λ(0))E[Vt+1(y + D, 1)], (12)

and

s2
t (0) = arg min

y≥0
J 2

t (y, 0)

where

J 2
t (y, 0) = −cu y + E[h(y + D)] + αλ(0)E[Vt+1(y + D, 0)]

+α(1 − λ(0))E[Vt+1(y + D, 1)]. (13)

Note that s1
t (0) ≥ s2

t (0). For i > 0, define

st (i) = arg min
y≥0

Jt (y, i),
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where

Jt (y, i) = −cr y + E[h(y + D)] + αλ(i)E[Vt+1(y + D, 0)]
+α(1 − λ(i))E[Vt+1(y + D, i + 1)]. (14)

The following theorem characterizes the optimal shipping policy for the manufacturer
when both carriers have finite shipping capacities.

Theorem 3 There exist two numbers s1
t (0) and s2

t (0)and a sequence of number st (i) for
i = 1, 2, . . . , M. The optimal shipping policy is a modified threshold policy, which is given
by, for i = 0,

y∗
t (0) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xt if xt ≤ s2
t (0),

s2
t (0) if Cu ≥ xt − s2

t (0) > 0,
xt − Cu if Cu + s1

t (0) ≥ xt > Cu + s2
t (0),

s1
t (0) if Cu + Cr ≥ xt − s1

t (0) > Cu,
xt − (Cu + Cr ) otherwise,

for i = 1, 2, . . . , M,

y∗
t (i) =

⎧⎨
⎩

xt if xt ≤ st (i),
st (i) if Cr ≥ xt − st (i) > 0,
xt − Cr otherwise.

Proof The theorem follows from the convexity of (12, 13 and 14). ��
This policy works as follows. At the beginning of each period, if U is available but the

initial inventory level is less than s2
t (0), then ship nothing; if the initial inventory level is

higher than s2
t (0) and xt − s2

t (0) is less than Cu , the capacity of U, then ship to reduce the
inventory level down to s2

t (0); if the inventory level is between s1
t (0) + Cu and s2

t (0) + Cu ,
use up the shipping capacity of carrier U; if the inventory level is between Cu + Cr + s1

t (0)

and s1
t (0) + Cu , ship to reduce the inventory level down to s1

t (0); if the inventory level is
higher than s1

t (0) + Cu + Cr , use up both carriers’ shipping capacities. If carrier U has been
down for i − 1 periods and the initial inventory level is less than st (i), ship nothing; if the
inventory level is between Cr + st (i) and st (i), then ship to reduce the inventory level down
to st (i); otherwise, use up the capacity of carrier R.

Lemma 6 (a) For a given Cr , we have, for all t and i , if the carrier U has more capacity,
i.e. Cu increases, then

(i) Vt (x, i) gets lower;
(ii) s j

t (0) for j = 1, 2, and st (i) for i ≥ 1, become higher.

(b) For a given Cu, we have, for all t and i , if the carrier R has more capacity, i.e. Cr

increases, then

(i) Vt (x, i) gets lower;
(ii) s j

t (0) for j = 1, 2, and st (i) for i ≥ 1, become higher.

The lemma basically says that if the shipping capacity of either carrier increases given the
other carrier’s capacity fixed, the optimal thresholds increase. However, this does not imply
that the thresholds will increase when the total capacities of two carriers increase. Intuitively,
this is because the thresholds are more sensitive to the unreliable carrier’s capacity level than
that of the reliable carrier.
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Fig. 1 Heuristic cost versus optimal cost

We conclude this section with some remarks for the case with fixed setup costs as well as
capacity constraints for the carriers. The structure of the optimal delivery policy for that case
will be very complicated. Even for the model with only one reliable carrier that has setup cost
and capacity constraint, the form of the optimal control policy is unknown and can only be
partially characterized. Interested readers are referred to Shaoxiang and Lambrecht (1996),
Gallego and Scheller-Wolf (2000), and Shaoxiang (2004) on some partial characterizations
of the optimal inventory control policy of the classical inventory model with setup costs and
capacity constraints.

In light of the optimality of modified base-stock policy and (s, S) policy, we propose a
modified (st (i), St (i)) policy as a heuristic and evaluate its performance with some simple
numerical examples. The modified (st (i), St (i)) policy works as follows, if the inventory
level is higher than St (i) then deliver down to st (i) or using full delivery capacity; otherwise,
deliver nothing. The parameters St (i) and st (i) are computed without capacity constraints.
In Fig. 1, we compare the cost of the heuristic policy with the minimum cost for an example
with Ku = 50, Kr = 80, cu = 5, cr = 8, M = 5 and demand is Poisson with λ = 20. The
capacity levels are C0 = 30, C1 = 10 for (a) and C0 = 10, C1 = 5 for (b). As we can see
from the figure, the resulting costs of heuristic policy is close to those of the optimal policy
especially when the starting inventory level is high.

5 Summary and discussion

In today’s global economy, as more companies outsource their transportation/logistics to
the third party logistics providers, it is important for the firm to optimally manage its trans-
portation carriers and schedule its shipments. In this paper, we studied a make-to-order
production/inventory model with two carriers, one reliable and one unreliable under several
different scenarios. We modeled the unreliable carrier as a discrete time Markov process
with finite number of states. We characterized the optimal transportation strategies for each
scenario. When there is neither setup cost nor capacity constraints, we showed that the total
discounted system costs are increasing in the initial inventory level and the optimal threshold
is increasing as the number of periods that the unreliable carrier has been down increases. If
there exist fixed setup costs for both carriers, we established the optimality of state-dependent
(s, S)—type policies. When the transportation carriers are capacitated, we showed that the
modified threshold-type policies are optimal and the optimal thresholds are increasing in the
capacity level of either carrier.
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There are still several related research questions need to be answered. For example, how
can the high-cost responsive carrier survive in the current intensified market competition?
How do carriers determine their transportation prices and guaranteed delivery leadtime? How
does manufacturer charge customers the delivery fees for different delivery leadtimes as dif-
ferent customers have different preferences on prices and leadtimes (See Chen-Ritzo et al.
(2005) for an experimental study on how customers tradeoff between cost and leadtimes)?
To address the first question, we believe that competition is based on not only cost, but also
other factors, such as service level and delivery time, among others, which means that a
mathematical model has to be developed that includes all these dimensions of each carriers.
We will investigate these in the future research.

We conclude this paper by discussing several extensions.

5.1 General production leadtime

In our paper, we assume the production leadtime is 1. If we relax this assumption and gener-
alize the length of production leadtime to L , for the model with no setup cost and capacity
constraint, the problem can be formulated as,

Vt (xt , d̄, it ) = min
xt ≥yt

{
c(it )(xt − yt ) + E[h(yt + dt−L)]

+α(λ(it )E[Vt+1(yt + dt−L , d̄ ′, 0)]
+ (1 − λ(it ))E[Vt+1(yt + dt−L , d̄ ′, it + 1)]

}
,

in which d̄ = [dt−L , . . . , dt−1] and d̄ ′ = [dt−L+1, . . . , Dt ] are both L-dimension vectors,
which represent the realized demand in the past L periods from period t and period t + 1,
respectively. Since only the on-hand stock can be delivered and the system is make-to-order,
we need to include the WIP products in pipeline into state of the system. We note that the
results in the main context of the paper can all be extended to the general leadtime case, while
the optimal policy will become more complicated, depending on the realized demand in the
past L periods.

5.2 Make-to-stock system

In this subsection, we consider the make-to-stock system. If we still assume the production
leadtime is 1 and let cp denote the unit production cost, b and h′ be the unit backlog (customer
waiting) cost and holding cost of inventory respectively, then we can formulate the problem
(no setup cost and capacity constraint) as

Vt (xt , zt , it ) = min
ut −yt ≥0,0≤xt −yt ≤zt

{cp(ut − yt ) + c(it )(xt − yt )

+ E[b(zt + D − (xt − yt ))] + h′yt

+αλ(it )E[Vt+1(ut , zt + D − (xt − yt ), 0)]
+α(1 − λ(it ))E[Vt+1(ut , zt + D − (xt − yt ), it+1)]},

in which xt is the starting inventory level while zt is the total purchase order waiting to be
delivered. The first term in the braces is the production cost, the second term is the shipping
cost, the third term is the customer waiting cost and the fourth term is the inventory holding
cost. It is clear that Vt (xt , zt , it ) is jointly convex in xt and zt and the optimal production
policy is base-stock type policies, which depend on the state it of the unreliable carrier, start-
ing inventory level xt and the number of waiting customers zt . The shipping policy is still
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deliver-down-to type policies that also depend on the state of unreliable carrier and starting
inventory level.

5.3 Infinite planning horizon

The model can be extended to the case with an infinite planning horizon. By following the
standard arguments (see Ross 1983), we can show that, under mild technical conditions, the
results we have derived in previous sections can all be extended to the infinite horizon case.
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Appendix

In this appendix, we provide the proofs of Propositions 1 and 2, Lemmas 4 and 6, and Theo-
rem 2. Unless otherwise noted, in the following proof, we use E[ f ′(y)] instead of E[ f (y)]′ as
the expectation and derivative are assumed interchangeable for a continuous function f (y),
which follows from Leibniz’s rule.
Proof of Proposition 1. We prove this proposition by induction on t . It is clearly true for
t = T + 1. Suppose it is true for t = k + 1. For any period t = k, if i ≥ 1, sk(i) is the
minimizer of (3) such that

−cr + E[h′(sk(i) + D)] + αλ(i)E[V ′
k+1(sk(i) + D, 0)]

+α(1 − λ(i))E[V ′
k+1(sk(i) + D, i + 1)] = 0. (15)

It suffices to show that J ′
k(sk(i), i − 1) ≥ 0. Note that, for i > 1,

J ′
k(sk(i), i − 1)

= −cr + E[h(sk(i) + D)]′ + αλ(i − 1)E[Vk+1(sk(i) + D, 0)]′
+α(1 − λ(i − 1))E[Vk+1(sk(i) + D, i)]′

= −(αλ(i)E[Vk+1(sk(i) + D, 0)]′ + α(1 − λ(i))E[V ′
k+1(sk(i) + D, i + 1)])

+αλ(i − 1)E[Vk+1(sk(i) + D, 0)]′ + α(1 − λ(i − 1))E[V ′
k+1(sk(i) + D, i)]

= α(λ(i − 1) − λ(i))cu + α(1 − λ(i − 1))E[Vk+1(sk(i) + D, i)]′
−α(1 − λ(i))E[V ′

k+1(sk(i) + D, i + 1)]
= α(λ(i − 1) − λ(i))cu + α(1 − λ(i − 1))cr − α(1 − λ(i))E[V ′

k+1(sk(i) + D, i + 1)]
≥ α(λ(i − 1) − λ(i))cu + α(1 − λ(i − 1))cr − α(1 − λ(i))cr

= α(λ(i) − λ(i − 1))(cr − cu)

≥ 0,

in which the second equality follows from (15), the third equality follows from V ′
k+1(sk(i)+

D, 0) = cu for any sample path D because sk(i)+ D ≥ sk+1(i)+ D ≥ sk+1(0) by the induc-
tive assumption and Lemma 3, and the fourth equality follows from V ′

k+1(sk(i)+ D, i) = cr

because sk(i) + D ≥ sk+1(i) for any sample path D; the first inequality follows from
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V ′
k(x, i) ≤ cr because of the convexity of Vk(x, i) and the second inequality is due to

λ(i) ≥ λ(i − 1). Therefore, st (i) ≥ st (i − 1).
If i = 1, we have

J ′
k(sk(1), 0)

=−cu+E[h(sk(1)+D)]′+αλ(0)E[V ′
k+1(sk(1)+D, 0)]+α(1 − λ(0))E[V ′

k+1(sk(1)+D, 1)]
= cr − cu + α(λ(0) − λ(1))cu + α(1 − λ(0))E[V ′

k+1(sk(1) + D, 1)]
−α(1 − λ(1))E[V ′

k+1(sk(1) + D, 2)]
≥ cr − cu + α(λ(0) − λ(1))cu + α(1 − λ(0))cr − α(1 − λ(1))cr

= cr − cu + α(λ(1) − λ(0))(cr − cu)

≥ 0,

where the second equality follows from (15) for i = 1, the first inequality again follows from
that V ′

k(x, i) ≤ cr for i > 0, and the last inequality holds because |α(λ(1) − λ(0))| < 1
which does not depend on the relationship between λ(1) and λ(0). Thus we complete the
proof.
Proof of Proposition 2. We use notation Vt (x, i, M), Jt (y, i, M), λ(i, M) and st (i, M) to
emphasize the dependency on M . We prove this result by induction on t . From the initial
condition, it is clear that the proposition is valid for t = T + 1. Suppose (a), (b) and (c) are
all true for t = k + 1. For period t = k, we first prove part (b). Note that M1 ≤ M2 and for
j = 1, 2, sk(i, M j ) is the minimizer of

Jk(y, i, M j ) = −c(i)y + E[h(y + D)] + αλ(i, M j )E[Vk+1(y + D, 0, M j )]
+α(1 − λ(i, M j ))E[Vk+1(y + D, i + 1, M j )]. (16)

It is sufficient to show that

J ′
k(sk(i, M2), i, M1) ≤ 0.

By the inductive assumption of part (c), V ′
k+1(x, i, M2) ≥ V ′

k+1(x, i, M1), so

J ′
k(sk(i, M2), i, M1)

≤ α(λ(i, M1) − λ(i, M2))

(
E[V ′

k+1(sk(i, M2) + D, 0, M2)]

−E[V ′
k+1(sk(i, M2) + D, i + 1, M2)]

)
.

Because λ(i, M2)≤ λ(i, M1), the above function is negative if E[V ′
k+1(sk(i, M2)

+D, 0, M2)] ≤ E[V ′
k+1(sk(i, M2) + D, i + 1, M2)]. From (5) and Proposition 1, we know

−cr + E[h′(sk(i, M2) + D)] + αcu ≤ 0. Furthermore, for i ≥ 1,

J ′
k(sk(i, M2), i, M2)

= −c(i) + E[h′(sk(i, M2) + D)] + αE[V ′
k+1(sk(i, M2) + D, 0, M2)]

+α(1 − λ(i, M2))[E[V ′
k+1(sk(i, M2) + D, i + 1, M2)]

−E[V ′
k+1(sk(i, M2) + D, 0, M2)]]

= −cr + E[h′(sk(i, M2) + D)] + αcu

+α(1 − λ(i, M2))[E[V ′
k+1(sk(i, M2) + D, i + 1, M2)]

−E[V ′
k+1(sk(i, M2) + D, 0, M2)]]

= 0.
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Therefore, E[V ′
k+1(sk(i, M2) + D, i + 1, M2)] − E[V ′

k+1(sk(i, M2) + D, 0, M2)] ≥ 0 for
i ≥ 1. For i = 0, note that, by inductive assumption of part (a) and λ(0, M2) = λ(0, M1),

J ′
k(sk(0, M2), 0, M1)

= −cu + E[h′(sk(0, M2) + D)] + αλ(0, M1)cu + α(1 − λ(0, M1))

×E[V ′
k+1(sk(0, M2) + D, 1, M1)]

≤ −cu + E[h′(sk(0, M2) + D)] + αλ(0, M2)cu + α(1 − λ(0, M2))

×E[V ′
k+1(sk(0, M2) + D, 1, M2)]

= 0

Hence, sk(i, M2) ≤ sk(i, M1) for all i ≤ M1 and part (b) is proved.
For (a), we need to show, for x1 ≥ x2 and

Vk(x1, i, M2) + Vk(x2, i, M1) ≥ Vk(x2, i, M2) + Vk(x1, i, M1).

To prove above inequality, we need to discuss several cases. In the following, we use one
case to illustrate the proof of above inequality. All other cases can be similarly proved. From
(c), we know sk(i, M2) ≤ sk(i, M1). If x1 ≥ sk(i, M1) ≥ x2 ≥ sk(i, M2),

Vk(x1, i, M2) − Vk(x2, i, M2)

= c(i)(x1 − x2)

≥ c(i)(x1 − x2) + (Jk(sk(i, M1), i, M1) − Jk(x2, i, M1))

= Vk(x1, i, M1) − Vk(x2, i, M1),

where the inequality follows from the optimality of sk(i, M1).
For part (c), since it can be easily shown by the inductive assumption, so we skip the proof

here.
Proof of Lemma 4. For ease of exposition, we rewrite the optimality equation equivalently
as follows,

Vt (x, i) = min
y+Q=x,y≥0,Q≥0

{K (i)1(y < x) + f1(Q, i) + f2(y, i)},

where f1(Q, i) = c(i)Q and f2(y, i) = E[h(y + D)] + α[λ(i)E[Vt+1(y + D, 0)] + (1 −
λ(i))E[Vt+1(y + D, i + 1)].

We prove this lemma by induction on t . It is obviously true for t = T + 1. Suppose the
lemma is true for t = k + 1. We next show it is true for t = k. Note that both f1(·, i) and
f2(·, i) are increasing functions. Let x2 > x1 and Q1, y1 and Q2, y2 denote the optimal Q
and y when the starting inventory level is x1 and x2, respectively.
Case 1, Q1 = 0, y1 = x1,

Vk(x1, i) = f1(0, i) + f2(x1, i).

Subcase 1, Q2 = 0, y2 = x2,

Vk(x2, i) = f1(0, i) + f2(x2, i) ≥ f1(0, i) + f2(x1, i).

The inequality follows from that f2(·, i) is nondecreasing.
Subcase 2, 0 < Q2 ≤ x1, y2 = x2 − Q2,

Vk(x2, i) = K (i) + f1(Q2, i) + f2(x2 − Q2, i)

≥ f1(0, i) + f2(x1, i) + f2(x2 − Q2, i) − f2(x1 − Q2, i)

≥ f1(0, i) + f2(x1, i).
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The first inequality follows from the optimality of (0, x1) and the second inequality again
from nondecreasingness of f2(·, i).
Subcase 3, x1 < Q2 ≤ x2, y2 = x2 − Q2,

Vk(x2, i) = K (i) + f1(Q2, i) + f2(x2 − Q2, i)

≥ K (i) + f1(x1, i) + f2(0, i) + f2(x2 − Q2, i) − f2(0, i)

≥ f1(0, i) + f2(x1, i) + f2(x2 − Q2, i) − f2(0, i)

≥ f1(0, i) + f2(x1, i),

where the first inequality follows from that f1(Q, i) is nondecreasing.
Case 2, 0 < Q1 ≤ x1, y1 = x1 − Q1,

Vk(x1, i) = K (i) + f1(Q1) + f2(x1 − Q1, i).

In this case, the optimal strategy is to ship Q1 units when the starting inventory level is x1.
Subcase 1, Q2 = 0, y2 = x2,

Vk(x2, i) = f1(0, i) + f2(x2, i)

≥ K (i) + f1(Q1, i) + f2(x1 − Q1, i) + f2(x2, i) − f2(x1, i)

≥ K (i) + f1(Q1, i) + f2(x1 − Q1, i).

The first inequality holds because Q = 0, y = x1 is a feasible policy and it cannot outperform
the optimal policy Q = Q1, y = y1.
Subcase 2, 0 < Q2 ≤ x1, y2 = x2 − Q2,

Vk(x2, i) = K (i) + f1(Q2, i) + f2(x2 − Q2, i)

≥ K (i) + f1(Q1, i) + f2(x1 − Q1, i) + f2(x2 − Q2, i) − f2(x1 − Q2, i)

≥ K (i) + f1(Q1, i) + f2(x1 − Q1, i).

Again the first inequality follows from that the feasibility of policy Q = Q2, y = x1 − Q2

and the optimality of Q = Q1, y = y1.
Subcase 3, x1 < Q2 ≤ x2, y2 = x2 − Q2,

Vk(x2, i) = K (i) + f1(Q2, i) + f2(x2 − Q2, i)

≥ K (i) + f1(x1, i) + f2(0, i) + f2(x2 − Q2, i) − f2(0, i)

≥ K (i) + f1(Q1, i) + f2(x1 − Q1, i) + f2(x2 − Q2, i) − f2(0, i)

≥ K (i) + f1(Q1, i) + f2(x1 − Q1, i).

So we have proved that Vt (x, i) is nondecreasing in x .
Proof of Theorem 2. We prove Theorem 2 by induction on t . Recall that VT +1(xT +1, iT +1) =
K (iT +1)1(xT +1 > 0) + c(iT +1)xT +1, so the lemma is true for t = T + 1. Suppose it is true
for t = k + 1 and let 0 ≤ y1 ≤ y2, then for t = k and any i = 0, 1, . . . , M , we have

E[Vk+1(βy1 + (1 − β)y2 + D, i)] ≤ β(E[Vk+1(y1 + D, i)] + Kr )

+ (1 − β)E[Vk+1(y2 + D, i)].
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Because h(·) is a convex function,

Jk(βy1 + (1 − β)y2, i)≤β(−c(i)y1+E[h(y1 + D)])+(1 − β)(−c(i)y2 + E[h(y2 + D)])
+αλ(i)[β(E[Vk+1(y1 + D, 0)] + Kr )

+ (1 − β)E[Vk+1(y2 + D, 0)]]
+α(1 − λ(i))[β(E[Vk+1(y1 + D, i + 1)] + Kr )

+ (1 − β)E[Vk+1(y2 + D, i + 1)]]
= β Jk(y1, i) + (1 − β)Jk(y2, i) + αβKr

Hence Jk(y, i) is {αKr , 0}-convex and so it is {Kr , 0}-convex.
For part (c), we first show the case i = 0. If Ku ≥ αKr , because Jk(y, i) is {αKr , 0}-

convex, then for y ≥ Sk(0), Jk(y, i) is increasing. Hence, when i = 0, it is optimal for the
manufacturer to deliver down to sk(0) if x ≥ Sk(0). If E[h′(D)] ≥ cu , because V (·, i) is
increasing and h(·) is convex, then sk(0) = 0 and it is optimal to deliver down to sk(0) if
x ≥ Sk(0). So part (c) holds for i = 0. For i > 0, from the {αKr , 0}-convexity, it is clear
that it is optimal to deliver down to sk(i) when x ≥ Sk(i), otherwise do not ship anything.
Thus, (c) is valid for all i .

In what follows we ignore the linear term c(i)x for simplicity and show Vk(x, i) is {Kr , 0}-
convex by discussing several different cases. Let x1 ≤ x2.
Case 1, Sk(i) ≤ x1 ≤ x2, then βx1 + (1 − β)x2 ≥ Sk(i) and

Vk(βx1 + (1 − β)x2, i) = Jk(sk(i), i) + K (i)

= β(Jk(sk(i), i) + K (i)) + (1 − β)(Jk(sk(i), i) + K (i))

= βVk(x1, i) + (1 − β)Vk(x2, i)

≤ β(Vk(x1, i) + Kr ) + (1 − β)Vk(x2, i).

Case 2, sk(i) ≤ x1 < Sk(i) ≤ x2.
Subcase 1, βx1 + (1 − β)x2 > Sk(i),

Vk(βx1 + (1 − β)x2, i) = Jk(sk(i), i) + K (i)

= β(Jk(sk(i), i) + K (i)) + (1 − β)(Jk(sk(i), i) + K (i))

≤ β(Vk(x1, i) + Kr ) + (1 − β)Vk(x2, i),

in which the inequality follows from that fact that sk(i) is the minimizer of Jk(y, i) and the
optimality of (sk(i), Sk(i)) policy.
Subcase 2, sk(i) ≤ βx1 + (1 − β)x2 ≤ Sk(i),

Vk(βx1 + (1 − β)x2, i) ≤ Jk(sk(i), i) + Kr

= β(Jk(sk(i), i) + Kr ) + (1 − β)(Jk(sk(i), i) + Kr )

≤ β(Vk(x1, i) + Kr ) + (1 − β)Vk(x2, i).

Case 3, x1 ≤ sk(i) < Sk(i) ≤ x2.
Subcase 1, βx1 + (1 − β)x2 > sk(i), the proof is similar to the previous case, so we skip
here.
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Subcase 2, βx1 + (1 − β)x2 < sk(i), then there exists ξ ≤ β, s.t. βx1 + (1 − β)x2 =
ξ x1 + (1 − ξ)sk(i),

Vk(βx1 + (1 − β)x2, i) ≤ Jk(βx1 + (1 − β)x2, i)

= Jk(ξ x1 + (1 − ξ)sk(i), i)

≤ ξ(Jk(x1, i) + Kr ) + (1 − ξ)Jk(sk(i), i)

= β(Vk(x1, i) + Kr ) + (1 − β)Jk(sk(i), i)

+ (β − ξ)(Jk(sk(i), i) − Jk(x1, i) − Kr )

≤ β(Vk(x1, i) + Kr ) + (1 − β)Vk(x2, i),

where the second equality follows from that Vk(x1, i) = Jk(x1, i) and the last inequality
follows from Jk(sk(i), i) − Jk(x1, i) < 0 and Vk(x2, i) ≥ Jk(sk(i), i).
Case 4, sk(i) ≤ x1 ≤ x2 < Sk(i),

Vk(βx1 + (1 − β)x2, i) ≤ Jk(βx1 + (1 − β)x2, i)

≤ β(Jk(x1, i) + Kr ) + (1 − β)Jk(x2, i)

= β(Vk(x1, i) + Kr ) + (1 − β)Vk(x2, i).

Case 5, x1 < sk(i) < x2 < Sk(i), this case can be similarly proved as Case 4.
Case 6, x1 < x2 < sk(i) < Sk(i), this case can be similarly proved as Case 4.

Thus, we complete the proof.
Proof of Lemma 6. We only prove part (a) as the proof for part (b) is parallel. In the following
discussion, to emphasize the dependency on the capacity, we use Vt (x, i, C), Jt (y, i, C),
s j

t (0, C) for j = 1, 2 and st (i, C) to denote the optimal value function and optimal thresh-
olds for given capacity C and the derivatives are all with respect to the first variable of the
function.

(1) Because the optimal policy for the problem with capacity C1
u is feasible for the problem

with capacity C2
u , (i) follows.

(2) We prove it by induction on t . For t = k + 1, suppose V ′
k+1(x, i, C2

u ) ≤ V ′
k+1(x, i, C1

u ),

then J j ′
k (y, 0, C2

u ) ≤ J j ′
k (y, 0, C1

u ) for j = 1, 2, and J ′
k(y, i, C2

u ) ≤ J ′
k(y, i, C1

u ) for

i > 1, which imply s j
k (0, C2

u ) ≥ s j
k (0, C1

u ) for j = 1, 2 and sk(i, C2
u ) ≥ sk(i, C1

u ).

For t = k, we provide the detailed proof for the case that i = 0 and s2
k (0, C1

u ) + C1
u ≤

s2
k (0, C2

u ) while the proof for other cases are similar and we leave it for reader.
Case 1, x < s2

k (0, C1
u ) < s2

k (0, C1
u ) + C1

u ≤ s2
k (0, C2

u ),

V ′
k(x, 0, C2

u ) = cu + J 2′
k (x, 0, C2

u ) ≤ cu + J 2′
k (x, 0, C1

u ) = V ′
k(x, 0, C2

u ).

Case 2, s2
k (0, C1

u ) ≤ x < s2
k (0, C1

u ) + C1
u ≤ s2

k (0, C2
u ),

V ′
k(x, 0, C2

u ) = cu + J 2′
k (x, 0, C2

u ) ≤ cu = V ′
k(x, 0, C1

u ).

Case 3, s2
k (0, C1

u ) < s2
k (0, C1

u ) + C1
u ≤ x < s2

k (0, C2
u ).

Subcase 1, x < s1
k (0, C1

u ) + C1
u ,

V ′
k(x, 0, C2

u ) = cu + J 1′
k (x, 0, C2

u ) ≤ cu ≤ cu + J 2′
k (x − C1

u , 0, C1
u ) = V ′

k(x, 0, C1
u ),

where the last inequality follows from J 1′
k (x − C1

u , 0, C1
u ) ≥ 0.

Subcase 2, s1
k (0, C1

u ) + C1
1 ≤ x < s1

k (0, C1
u ) + C1

1 + Cr ,

V ′
k(x, 0, C2

u ) = cu + J 1′
k (x, 0, C2

u ) ≤ cu ≤ cr + J 1′
k (s1

k (0, C1
u ), 0, C1

u ) = V ′
k(x, 0, C1

u ).

123



270 J Glob Optim (2009) 44:251–271

Subcase 3, s1
k (0, C1

u ) + C1
1 + Cr ≤ x ,

V ′
k(x, 0, C2

u ) = cu + J 1′
k (x, 0, C2

u ) ≤ cu ≤ cr + J 1′
k (x − (C1

1 + Cr ), 0, C1
u ) = V ′

k(x, 0, C1
u ).

Case 4, s2
k (0, C2

u ) ≤ x < s2
k (0, C2

u ) + C2
u .

Subcase 1, x < s1
k (0, C1

u ) + C1
u ,

V ′
k(x, 0, C2

u ) = cu ≤ cu + J 2′
k (x − C1

u , 0, C1
u ) = V ′

k(x, 0, C1
u ).

Subcase 2, s1
k (0) + Cu ≤ x < s1

k (0, C1
u ) + C1

1 + Cr ,

V ′
k(x, 0, C2

u ) = cu ≤ cr + J 1′
k (s1

k (0, C1
u ), 0, C1

u ) = V ′
k(x, 0, C1

u ).

Subcase 3, s1
k (0, C1

u ) + C1
1 + Cr ≤ x ,

V ′
k(x, 0, C2

u ) = cu ≤ cr + J 1′
k (x − C1

u − Cr , 0, C1
u ) = V ′

k(x, 0, C1
u ).

Case 5, s2
k (0, C2

u ) + C2
u ≤ x < s1

k (0, C2
u ) + C2

u .
Subcase 1, x < s1

k (0, C1
u ) + C1

u ,

V ′
k(x, 0, C2

u ) = cu + J 2′
k (x − C2

u , 0, C2
u ) ≤ cu + J 2′

k (x − C1
u , 0, C2

u )

≤ cu + J 2′
k (x − C1

u , 0, C1
u ) = V ′

k(x, 0, C1
u ),

where the second inequality follows from the inductive assumption.
Subcase 2, s1

k (0, C1
u ) + C1

u ≤ x < s1
k (0, C1

u ) + C1
u + Cr ,

V ′
k(x, 0, C2

u ) = cr + J 1′
k (x − C2

u , 0, C2
u ) ≤ cr = cr + J 1′

k (s1
k (0, C1

u ), 0, C1
u ) = V ′

k(x, 0, C1
u ).

Subcase 3, s1
k (0, C1

u ) + C1
u + Cr ≤ x ,

V ′
k(x, 0, C2

u ) = cr + J 1′
k (x − C2

u , 0, C2
u ) ≤ cr ≤ cr

+ J 1′
k (x − C1

u − Cr , 0, C1
u ) = V ′

k(x, 0, C1
u ).

Case 6, s1
k (0, C2

u ) + C2
u ≤ x < s1

k (0, C2
u ) + C2

u + Cr .
Subcase 1, s1

k (0, C1
u ) + C1

u ≤ x < s1
k (0, C1

u ) + C1
u + Cr ,

V ′
k(x, 0, C2

u )=cr + J 1′
k (s1

k (0, C2
u ), 0, C2

u )=cr =cr + J 1′
k (s1

k (0, C1
u ), 0, C1

u )=V ′
k(x, 0, C1

u ).

Subcase 2, s1
k (0, C1

u ) + C1
u + Cr ≤ x ,

V ′
k(x, 0, C2

u ) = cr + J 1′
k (s1

k (0, C2
u ), 0, C2

u ) = cr ≤ cr

+ J 1′
k (x − C1

u − Cr , 0, C1
u ) = V ′

k(x, 0, C1
u ).

Case 7, s1
k (0, C2

u ) + C2
u + Cr ≤ x , then s1

k (0, C1
u ) + C1

u + Cr ≤ x ,

V ′
k(x, 0, C2

u ) = cr + J 1′
k (x − C2

u − Cr , 0, C2
u )

≤ cr + J 1′
k (x − C1

u − Cr , 0, C2
u )

≤ cr + J 1′
k (x − C1

u − Cr , 0, C1
u )

= V ′
k(x, 0, C1

u ).

Thus, we have proved (ii) of part (a) if s2
k (0, C1

u ) + C1
u ≤ s2

k (0, C2
u ). We can similarly

prove the case if s2
k (0, C1

u ) + C1
u > s2

k (0, C2
u ).

For i > 0, we can similarly prove the result by discussing two cases, i.e., sk(i, C1
r )+C1

r ≤
sk(i, C2

r ) and sk(i, C1
r ) + C1

r > sk(i, C2
r ).
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